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Latency Insertion Method (LIM) for the Fast
Transient Simulation of Large Networks
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Abstract—In this work, a finite difference formulation is used
to simulate large networks. The method makes use or introduces
reactive latency in all branches and nodes of a circuit to generate
update algorithms for the voltage and current quantities. A crite-
rion is established that guarantees the stability of the algorithm
for specified choices of the time step. Because of its linear numer-
ical complexity, several orders of magnitude in speedup over ma-
trix-based methods are obtained. Nonlinear networks can also be
simulated by the formulation. Several comparisons are made with
standard simulators in order to evaluate the accuracy and effi-
ciency of the algorithm. In all cases that satisfy the stability cri-
terion, good agreements with established techniques are obtained.

Index Terms—Algorithm, discretization, latency, network, sta-
bility.

I. INTRODUCTION

T HE need for an increased density of I/O pin connections
and the reduction in size of high-speed digital circuits have

led to an increase in the complexity of interconnect schemes. At
the board and package levels, the implementation of multilayer
interconnects has led to structures with a high density of pas-
sive components. As a result, the three-dimensional (3-D) na-
ture of present-day networks has rendered their analysis more
challenging.

These challenges are also emerging at the chip level. As out-
lined by the International Technology Roadmap for Semicon-
ductors (ITRS) [1], the timeline acceleration in processor per-
formance forecast has led to an increasing gap between manu-
facturing technology and present-day design tools. Total inter-
connect lengths will lead to unprecedented wiring density which
will require novel design methodologies placing more emphasis
on interconnect issues.

The simulation of very large networks consisting of large
numbers of nodes is a major problem in the computer-aided
design of integrated circuits. Circuits of this size can typically
require several days of CPU time on a workstation. Several
investigators have introduced algorithms and numerical tech-
niques such as the asymptotic waveform evaluation (AWE)
[2]–[4] method to approximate network transfer functions. The
fundamental idea behind model-order reduction rests in the
implementation of a circuit representation based on a smaller
number of poles than the original network. These poles account
for most of the behavior of the network over the frequency
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range of interest. The resulting macromodel equivalent circuits
can be used in conjunction with standard circuit simulators.

Work was later introduced to reduce the number of spurious
poles generated by the reduction process. This includes the com-
plex frequency hopping techniques, and the Krylov subspace
methods [5]–[8]. More recent work on model order reduction
techniques have focused on the passivity of the reduced equiv-
alent circuits [9], [10].

In this study, we use a time-domain formulation that leads to
the generation of update algorithms for the simulation of net-
works. The algorithms exhibit linear computational complexity
and are scalable. Because of the time domain nature of the for-
mulations, they can be extended to handle nonlinearities.

First, we present a formulation of the method for the case of
linear networks by deriving the update algorithms. Next, the sta-
bility of these algorithms is addressed followed by an extension
of the formulation to special elements and nonlinear networks.
Finally, several networks are analyzed and simulated using the
method for comparison with standard simulators. Tradeoffs be-
tween speed, stability, and accuracy are examined throughout
the comparisons.

II. FORMULATION FOR LINEAR NETWORKS

Distributed networks are often used to describe signal propa-
gation on uniform transmission lines (Fig. 1). This model is also
a high-frequency representation of an interconnection. Fig. 2
shows a more general interconnection topology in which signals
can propagate in more than one direction. Such a model can be
viewed as the high-frequency representation of an arbitrary net-
work. In analyzing an arbitrary network, we can define a branch
as a connection between two nodes (excluding the ground ref-
erence node). In defining the desired topology for such an anal-
ysis, the following requirements are made.

1) Each branch of the network must contain an inductance;
otherwise, a small inductance is inserted into the branch
to generate the latency.

2) Each node of the network must provide a capacitive path
to ground; otherwise, a small shunt capacitor is added to
generate latency at that node.

In addition, it is also assumed that by using combinations of
Thévenin and Norton transformations, all branches and nodes
can be converted to this topology. After all augmentations and
reductions are performed, network branches are represented
with a voltage source, a resistor, and an inductor in series. All
connections to ground are represented by a parallel combination
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Fig. 1. Discrete distributed model for uniform transmission line.R;L;G, andC are the resistance, inductance, conductance, and capacitance per unit length,
respectively.

Fig. 2. Network with interconnect topology.

of a current source, a capacitance, and a conductance to ground
from every node.

First, the time variable is discretized, next the voltage and
current quantities are collocated in half time steps to generate
sequences of the form for voltages
and for currents.

A. Branch Algorithm

Each branch is represented as a combination of a voltage
source, an inductor, and a resistor in series. Currentis as-
sumed to be directed from nodeat voltage to node at po-
tential (see Fig. 3).

The discrete time equation reads

(1)

Solving for the unknown current leads to

(2)

At each time step, this operation is performed over all
branches of the network in order to update all the current values.

B. Node Algorithm

Each node is modeled as a parallel combination of a current
source, a conductance, and a capacitor to ground as shown in
Fig. 4. The equation reads

(3)

Fig. 3. Branch equation formulation.

Fig. 4. Node equation formulation.

where is the number of branches connected to node(ex-
cluding connections to ground). This yields

(4)

for . At each time step, this operation is per-
formed over all nodes in order to update all the voltage quan-
tities.

Computations of all branch currents then all node voltages
are alternated as time progresses; thus a complete network sim-
ulation can be summarized by the following algorithm.
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Fig. 5. Multidirectional network.

Altogether, operations are performed to obtain
values, hence yielding an optimally efficient al-

gorithm.

III. STABILITY CONSIDERATIONS

A numerical stability analysis of the latency insertion method
(LIM) is now performed to establish the relationship between
the time steps and the parameters of the network. From a wave
point of view, because of the nonisotropic nature of the discrete
network, a signal propagates with different speeds in different
directions. If a node is chosen as the reference and voltage varia-
tions at another node are observed, propagation in one direction
can be analyzed through the use of the Telegrapher’s Equations.
In the discrete domain, choosing the direction as shown in
Fig. 5, the formulation reads

(5a)

(5b)

where and refer to the forward and backward differential
operators, respectively. First, in the case whereand are
negligible, numerical stability at nodewill be achieved if for
an oscillatory response in the time domain, the resulting signal
propagating in the direction is attenuated. If we assume a
dependence in the form of the discrete oscillator [11], the asso-
ciated condition is

(6)

which is analogous to the Courant–Friedrichs–Lewy (CFL) cri-
terion for wave propagation in a discrete grid [12]. This condi-
tion is still valid when and are nonzero. When translated
to a per cell basis, the relation becomes

(7)

This inequality can be viewed as a causality condition in
tracking a propagating signal through a lattice of circuit ele-
ments. The condition imposes some constraints that may limit

Fig. 6. Derivation of LIM equivalent circuit for mutual inductance; left:
original representation, right: equivalent circuit.

Fig. 7. Derivation of LIM equivalent circuit for branch capacitor. First,
backward Euler companion model is built; next, latency is introduced through
L .

the numerical efficiency of the method for large networks with
low latency. For such networks, insertion of small reactive ele-
ments lead to smaller time steps from (7) leading to longer sim-
ulations.

IV. NETWORK REDUCTION OFSPECIAL ELEMENTS

The LIM formulation is based on branch or node topology
requirements that are not met by some circuit elements. Those
elements can be transformed through reduction or augmenta-
tion before they can be incorporated in the formulation. These
include mutual inductance, branch capacitance, and controlled
sources. The transformation is performed by insertion of a delay
and by representation with the numerical integration-based
companion models [13]. For the coupled inductor system
shown in Fig. 6, a transformation must be performed to an
equivalent circuit that will represent the combined effect of the
self- and mutual inductances. The system satisfies the matrix
relation

(8)

where

and

(9)

In the discrete domain

(10)

or

(11)

Using the forward Euler numerical integration formula

(12)
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Fig. 8. Top: coupled line structure with capacitive terminations. The electrical parameters areL = 455 nH/m,C = 77 pF/m,L = 147 nH/m, andC = 22
pF/m. The length of the lines isd = 14 in. Bottom: discrete distributed model used to represent the transmission line system. The number of cells isN = 50. The
cell element values are:L = dL =N;L = dL =N;C = dC =N;C = dC =N;R = 0 
;.

where is the time step and is the time derivative of .
Using (11) as the discrete derivative and expanding, we get

(13a)

(13b)

more explicitly and using

(14a)

(14b)

where

(15a)

(15b)

The system can be represented by the equivalent circuit
shown in Fig. 6, in which the current sourcesand depend
on the history of the coupled system. After this transformation,
the resulting branches can be easily inserted into an existing
network. In a similar manner, branch capacitors can be trans-
formed and represented by their discrete numerical integration
companion models [13] (see Fig. 7). In order to generate the
latency, a small inductor is inserted within the branch. Similar
transformations can be performed for other elements including
inductors to ground.

In order to validate these transformation methods and assess
the accuracy of the resulting algorithms, computer simulations
and laboratory experiments were performed and compared. For
the experimental setup, a coupled microstrip system was de-
signed and terminated as shown in Fig. 8. One line was used
as a drive line and excited with a 12-ns-wide pulse; the adjacent

line was used as a sense line. Voltage responses were measured
at the near ends of both drive and sense lines. For the computer
simulation, the discrete distributed model for coupled transmis-
sion lines shown in Fig. 8 was used. The system consisted of 50
cells. Mutual inductors and capacitors were modeled using the
method described above. Fig. 9 shows the waveforms obtained
for both experimental and computer simulations. Good agree-
ment was obtained for both drive and sense line responses.

V. NONLINEAR FORMULATION

One advantage of time-domain formulations for circuit
analysis rests on the ability to handle nonlinear behaviors. In
addition to interconnects, most integrated circuits contain a
large number of nonlinear devices such as diodes and tran-
sistors. When the number of these elements becomes large,
matrix-based methods become inefficient. Since the latency
insertion method uses a time-domain formulation, the extension
to nonlinearities is straightforward. For such devices, the cur-
rent–voltage relation is expressed through a nonlinear function.
Without loss of generality, such current–voltage relation can
be expressed as: such that , where is
the associated inverse function (Fig. 10). In a similar manner
as in the linear case, the branch and the node formulations are
separated.

When the nonlinear element is inserted into a branch with
latency (see Fig. 11), the discretized formulation becomes

(16)

The unknown current can be solved by iteration using
the Newton–Raphson algorithm. When the variables and

are replaced by and , respectively, the iteration
formula for the current solution becomes

(17)
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Fig. 9. Computer simulations of distributed model (top) and experimental waveforms of coupled microstrip lines (bottom) for the circuit of Fig. 8 at the near
end(x = 0) for line 1 (left) and line 2 (right). The pulse characteristics are magnitude=4 V; width =12 ns; rise and fall times=1 ns. The photograph probe
attenuation factors are 40 (left) and 10 (right).

Fig. 10. Nonlinear element.

Fig. 11. Nonlinear branch equation formulation.

where . The subscript
refers to the th iteration. These are performed on the branch
under consideration at a given time step.

In the case where a nonlinear element provides a path to
ground, the network with latency, shown in Fig. 12, is used. The
discretized equation reads

(18)

The voltage can be solved iteratively using
the Newton–Raphson algorithm. Replacing and

Fig. 12. Nonlinear node equation formulation.

with and , respectively, the iteration algorithm
becomes

(19)

The iteration is performed until convergence to the node
voltage solution. It must be emphasized that in both branch and
node cases, the iterations are performed only on the branches
and nodes containing the nonlinear elements. This leads to a
significant computational advantage over standard modified
nodal analysis (MNA) methods in which the iterations are
performed over the entire network consisting of both linear and
nonlinear components.
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Fig. 13. (a) Network with zero latency to be simulated. (b) Augmented network used for simulation with LIM. The base values are shown for the inductive and
capacitive elements. For each simulation, these values are divided by a scaling factor to approximate the response of the circuit in (a).

Fig. 14. Simulation results for various levels of scaling of the reactive elements of the network of Fig. 13(b) to emulate the actual response of the network in
Fig. 13(a). Response waveforms shown are for nodes 1 and 4. Inductive and capacitive elements of Fig. 13(a) are divided by the scaling factor.

The complete nonlinear network simulation is thus summa-
rized by the following algorithm:

Generalization of this algorithm to networks with transistors
(e.g., MOSFET, BJT) follows naturally from the previous devel-
opments. In particular, when inverse functions relating voltage
and current variables cannot be extracted analytically, nonlinear
devices can be represented by their linearized Newton–Raphson
equivalent circuits at each iteration [13]. The derivation and il-
lustration of these schemes are outside the scope of the present
work and will be the subject of a future paper.
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Fig. 15. Nonlinear circuit used for computer simulations.

TABLE I
ELEMENT VALUES FORTEST CIRCUIT OF FIG. 15

VI. L ATENCY SIMULATIONS

Worst case analysis of the LIM can be performed by ana-
lyzing networks with low latency. Such a network is shown
in Fig. 13(a). In order to simulate its transient response using
a LIM approach, the augmented network of Fig. 13(b) is im-
plemented. Base values are first chosen for the reactive ele-
ments. These base values are then divided by a scaling factor
before each simulation with larger scaling factors corresponding
to better approximations of the actual transient response of the
circuit in Fig. 13(a).

Simulations were performed for scaling factors of 1, 5, 10,
and 100. The excitation was a pulse with rise and fall times of
1 ns and pulse width of 4 ns. The resulting transient response
waveforms are shown in Fig. 14. As expected, a sufficiently ac-
curate response can be obtained; however, this also requires a

scaling of the time step leading to a reduction in computational
speed. This compromise is a consequence of the stability con-
dition (7) and is also a strong function of the excitation used in
the transient simulation.

VII. N ONLINEAR AND LARGE NETWORK SIMULATIONS

As a first step, the accuracy of the method at estimating tran-
sients in nonlinear networks is evaluated. For this purpose, the
basic linear network shown in Fig. 15 is analyzed. The network
consists of resistive, reactive, and nonlinear elements. Actual
values used in the simulations are shown in Table I. The non-
linear elements are diodes which obey the well known equation

(20)
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Fig. 16. Plots of waveform for nonlinear circuit for SPICE (left) and LIM (right). The pulse characteristics forV are: magnitude= 1 V, rise and fall times= 1

ns, pulsewidth= 4 ns.

Fig. 17. Top: Basic cell used for nonlinear analysis. Numbers refer to nodes of circuit in Fig. 15. Bottom: Cell arrangement for large network analysis.

where and are the diode current and voltage, respectively,
is the saturation current, and the thermal voltage. The

inverse function associated with this nonlinear behavior is

(21)

The analytical expressions for the derivatives of these func-
tions, as required by the iteration algorithms (17) and (19), can
be easily obtained. Both voltage and current iterations are used
in the solution process; moreover, when the bias voltage across
the diodes is below a threshold value, a linear model for the–
relation is used [14].

The network which is defined as a basic cell is excited with a
pulse. The resulting waveforms are simulated using both SPICE
and the proposed formulation. Plots of the waveforms are shown
in Fig. 16. They indicate a good agreement between the two
methods.

Next, larger networks are constructed by cascading segments
of the basic cell network totaling in larger numbers of nodes and
branches (Fig. 17). A pulse with shorter duration is used for the
excitation. Simulations are performed again using SPICE and
the proposed method for 100 time steps. Table II shows the com-
putational performance comparison between the two methods.
Several orders of magnitude are gained through the use of the
LIM approach.

VIII. R EMARKS AND OBSERVATIONS

Since the LIM formulation introduces latency, it is a high-
frequency method that approximates an arbitrary network as a
multidirectional interconnect with inductance in every branch

TABLE II
COMPARISON OFRUN TIMES

and shunt capacitance at every node. The method is the circuit
analog of the finite difference time domain (FDTD) method.
Based on the Yee algorithm [15], the FDTD method gener-
ates field solutions in time and space from the update equa-
tions. Although the FDTD method can be very intensive, it is
an optimally efficient algorithm [16] and has linear computa-
tional complexity. Scalar formulations of the FDTD method
have been used to analyze uniform transmission lines [17]. The
present method can thus be viewed as a generalization that intro-
duces nonuniformity and multidimensionality in the transmis-
sion lines. Accuracy, stability and efficiency of the LIM method
are increased for higher frequency or faster signals which justi-
fies its characterization as a high-frequency simulation method.

IX. CONCLUSION

An efficient method for the simulation of large networks has
been presented. The method introduces or uses latency behavior
in the network to generate update equations for the branch cur-
rents and node voltages. First simulation algorithms were de-
rived for linear passive networks; the formulation was then ex-
tended to handle nonlinear elements. Comparisons with SPICE
have shown speedups of several orders of magnitude.



SCHUTT-AINÉ: LATENCY INSERTION METHOD (LIM) FOR THE FAST TRANSIENT SIMULATION OF LARGE NETWORKS 89

ACKNOWLEDGMENT

The author wishes to thank Prof. I. N. Hajj for valuable com-
ments and suggestions during the development of this work.

REFERENCES

[1] International Technology Roadmap for Semicon-
ductors. (1999). [Online]. Available: http://notes.se-
matech.org/1999SIARoadmap/Home.htm

[2] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9, pp.
352–366, Apr. 1990.

[3] J. Bracken, V. Raghavan, and R. Rohrer, “Interconnect simulation with
asymptotic waveform evaluation (AWE),”IEEE Trans. Circuits Syst.,
vol. 39, pp. 869–878, Nov. 1992.

[4] T. Tang and M. Nakhla, “Analysis of lossy multiconductor transmission
lines using the asymptotic waveform evaluation technique,”IEEE Trans.
Microwave Theory Tech., vol. 39, pp. 2107–2116, Dec. 1991.

[5] E. Chiprout and M. S. Nakhla, “Analysis of interconnect networks using
complex frequency hopping (CFH),”IEEE Trans. Computer-Aided De-
sign, pp. 186–200, Feb. 1995.

[6] P. Feldmann and R. W. Freund, “Efficient linear cut analysis by Padé
via Lanczos process,”IEEE Trans. Computer-Aided Design, vol. 14, pp.
639–649, May 1995.

[7] M. Celik and A. Cangellaris, “Simulation of dispersive multiconductor
transmission lines by Padé approximation via Lanczos process,”IEEE
Trans. Microwave Theory Tech., vol. 44, pp. 2525–2535, Dec. 1996.

[8] W. T. Beyene and J. E. Schutt-Ainé, “Accurate frequency-domain mod-
eling and efficient circuit simulation of high-speed package intercon-
nects,”IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1941–1947,
Oct. 1997.

[9] A. Odabasioglu, M. Celik, and L. Pillegi, “PRIMA: Passive reduced-
order interconnect macromodeling algorithm,” inProc. Int. Conf. Com-
puter-Aided Design-97, Nov. 1997, pp. 58–65.

[10] Q. Yu, J. Wang, and E. Kuh, “Passive multipoint moment matching
model order reduction algorithm on multiport distributed interconnect
networks,”IEEE Trans. Circuit Syst., vol. 46, pp. 140–160, Jan. 1999.

[11] J. E. Schutt-Ainé, “Analysis of FDTD method via the discrete oscil-
lator,” in 1999 IEEE Antenna Propagation Symp., Orlando, FL.

[12] R. Courant, K. O. Friedrichs, and H. Lewy, “Uber die Partiallen
Differenzengleichungen der Mathematischen Physik,”Math. Ann., vol.
100, no. 32, 1928.

[13] L. O. Chua and P. M. Lin,Computer-Aided Analysis of Electronic Cir-
cuits. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[14] J. Vlach and K. Singhal,Computer Methods for Circuit Analysis, 2nd
ed. New York: Chapman and Hall, 1997.

[15] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media,”IEEE Trans. Antennas
Propagat., vol. 14, pp. 302–307, May 1966.

[16] W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from
modified Maxwell’s equations with stretched coordinates,”Micro. Opt.
Tech. Lett., vol. 7, pp. 599–604, Sept. 1994.

[17] C. R. Paul, “Incorporation of terminal constraints in the FDTD analysis
of transmission lines,”IEEE Trans. Electromagn. Compat., vol. 36, pp.
85–91, May 1994.

José E. Schutt-Ainé(S’87–M’88–SM’98) received
the B.S. degree from the Massachusetts Institute
of Technology, Cambridge, MA, and the M.S. and
Ph.D. degrees from the University of Illinois, Urbana
Champaign, in 1984 and 1988, respectively.

He started his career as an Application Engineer at
the Hewlett-Packard Microwave Technology Center
in Santa Rosa, CA, during 1981–1983 and was in-
volved in the design and testing of high frequency.
His work also included the modeling and testing of
microwave bipolar transistors. He has held positions

at GTE Network Systems in Northlake, IL, and Digital Equipment Corp. in
Hudson, MA, where he conducted research in signal integrity in high-speed
digital telecommunication networks and computer-aided design tool develop-
ment. He joined the faculty of the Electromagnetic Communication Labora-
tory, University of Illinois, in 1989 where he is currently Associate Professor
of Electrical and Computer Engineering. Prof. Schutt-Ainé’s interests include
microwave theory and measurements, electromagnetics, high-speed digital cir-
cuits, solid-state electronics, and the design and simulation of electronic pack-
ages.


